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 MITIGATION OF THE EFFECTS OF ECLIPSE BOUNDARY CROSSINGS 
ON THE NUMERICAL INTEGRATION OF ORBIT TRAJECTORIES USING 

AN ENCKE TYPE CORRECTION ALGORITHM 

James Woodburn=  

 

The proper application of a shadow model during the integration 
of orbit trajectories requires that the solar radiation pressure be 
sampled adequately during transitions between lighting 
conditions. An integration scheme is presented in which the 
lighting condition is held constant across steps of a primary 
integrator.  If the lighting condition changes during that step, 
then an Encke-like integration is performed to correct the state at 
the end of the primary integration step.  The effectiveness of this 
technique is presented for a set of Low Earth Orbits utilizing 
various combinations of the equations of motion and numerical 
integration methods.   
 
 

INTRODUCTION 

The computation of orbit trajectories using special perturbations techniques has 
advantages of being conceptually simple and capable of producing accurate results.  The basic 
concept is to compute the sum of all accelerations acting on the satellite at a given point in 
time and apply a numerical integration procedure to transition the state of the satellite into 
the future.  It is typically convenient to view the numerical integration procedures as “black 
boxes” where we adhere to specific input and output interfaces and blindly trust the process 
inside.  In some cases, however, it is necessary to consider the assumptions used in the 
derivation of the numerical integration procedures to determine if the problem to be solved 
complies with these assumptions.  

One area where the assumptions of the numerical integration procedure are often 
violated is in the modeling of effects of solar radiation pressure (SRP).  When the 
acceleration due to solar radiation pressure is included in the force model, it is necessary to 
account for the occultation of the Sun by the Earth and/or other large bodies.  The most 
common models for the shadow of the Earth and other planetary bodies are the conical 
model and the dual cone model.  Each of these models has hard boundaries across which the 
acceleration due to SRP changes in form.  These changes result in a discontinuity in the 
second order derivative of the position in the case of a cylindrical model and in a 
                                                      
= Chief Orbital Scientist, Analytical Graphics, Inc., Senior Member, AIAA 



2 

discontinuity or near discontinuity in the third derivative of the position in the case of a dual 
cone model. The existence of these discontinuities due to the shadow models violates the 
assumption, made in the formulation of many numerical integration methods, that the 
accelerations are smooth and continuous.   

The actual change in solar radiation pressure is not as sudden as that predicted by 
these models.  Absorption and refraction of solar radiation by the atmosphere and the 
apparent deformation of the solar disk as seen through the Earth’s atmosphere influence the 
level of illumination1. While detailed models of these phenomena exist, the complexity and 
computational burden imposed by such sophisticated shadow models has inhibited their 
widespread application2.  In light of the fact that the common shadow models are not exact, 
the interaction of the model with the integration procedure may not be immediately assumed 
to affect the accuracy of trajectory computation.  This interaction will, however, affect 
comparisons between orbit propagators and for that reason is worthy of study[3,4]. 

The effect of discontinuities in the simpler shadow models on the accuracy of the 
integrated trajectory, relative to a trajectory where the shadow model has been properly 
applied, is dependent upon how the integration method a steps across the boundary[2,5,6].  
While the dual cone model predicts a smoother transition between lighting conditions than 
the cylindrical model, it not uncommon for a single integration step to span the penumbra 
period thus causing the change in acceleration to seem instantaneous.  A recent study has 
shown that larger step sizes in the numerical integration process lead to larger errors being 
introduced into the trajectory5.  This trend is in direct opposition to the typical desire to take 
the largest possible step sizes during orbit integration to reduce the computation time. 
Errors, in this context, are differences measured relative to the proper application of the 
shadow model.   

In order to enable the use of larger steps during numerical integration while 
maintaining accuracy, a strategy is sought to mitigate the effects of the shadow boundary 
crossings.  Lundberg et al. have devised an algorithm for correcting the errors resulting from 
the crossing of shadow boundaries for multi-step integrators6.  This algorithm is an 
improvement of an algorithm originally devised by Hubbard and documented in the open 
literature by Anderle7.  This algorithm allows for the preservation of the step size of the 
integrator, but is tightly coupled to the particular multi-step formulation.  Lundberg also 
derived a method for determining the step size for a multi-step integrator using a fixed step 
size to minimize the errors due to crossing shadow boundaries8.  The optimal step size is 
computed to avoid situations where the time between the closest integration node and the 
shadow remains fairly constant.  In this situation, the numerical integration is in a form of 
resonance with the eclipsing of the satellite and the errors incurred during the crossings of 
the shadow boundaries are less likely to cancel out over time. 

A new approach to the mitigation of shadow boundary crossing effects has been 
developed where the crossing of shadow boundaries is ignored in the main integration 
procedure.  The crossings are detected at the end of the main integrator step and the state at 
the leading node of the integration process is corrected using the Encke method of orbit 
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integration.  This technique allows for the preservation of the integration step size and is 
applicable to both single step and multi-step integration procedures. 

SHADOW MODELS 

The effects of crossing the shadow boundaries of two shadow models were 
investigated in a prior study.  The cylindrical model, illustrated in Figure 1, assumes that the 
Sun is infinitely far away such that all light is coming from a direction parallel to the 
direction to the Sun.  The shadow cast by the Earth may then be represented as a cylinder of 
infinite length. The acceleration due to solar radiation pressure is zero when the satellite is 
inside the cylinder.  The particular implementation of the model used in this study does not 
assume the obstructing body to be spherical.   The lighting condition is determined by 
detecting if the line from the satellite, parallel to the Sun direction, intersects the obstructing 
body, which allows for the use of an oblate shape for the Earth. 
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Figure 1.  Cylindrical Shadow Model 

The dual cone model accounts for the finite size and distance of the Sun, which 
establishes a region of partial illumination known as the penumbra region, shown in Figure 2.  
There are several common methods for computing the magnitude of the acceleration due to 
solar radiation pressure when the satellite is in the penumbra region. The method most 
consistent with the geometry of the model, and the one used in this study, is to scale the 
acceleration of the satellite if it were in direct sunlight by the fractional area of the visible 
solar disk.  Other methods include (i) scaling the acceleration of the satellite if it were in 
direct sunlight based on a linear transition to full shadow and (ii) scaling the acceleration in 
full sunlight by one half.  The shape of the obstructing body is not assumed to be spherical in 
the implementation of the dual cone model used for this study.  The lighting condition is 
determined via comparison of the grazing angle of the line from the satellite to the apparent 
position of the Sun and the instantaneous half angle of the Sun.  If the grazing angle is 
greater than the half angle, the satellite is in direct sunlight.  If the grazing angle is smaller 
than the negative of the half angle, the satellite is in the umbra region.  If the absolute value 
of the grazing angle is smaller than the half angle of the Sun, the satellite is in the penumbra 
region. 
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Figure 2. Dual Cone Shadow Model 

 

FORMULATION 

Since the errors introduced into the integration process are a result of rapid changes 
in the force model during an integration step, a reasonable approach to mitigating the effects 
of shadow boundary crossings is to stop the integration procedure at the shadow boundary. 
The integration process may then be restarted in the presence of the new set of accelerations.  
While simple in concept, this process is not computationally efficient.  Restarting is 
especially costly for multi-step integration procedures, which require significant work to 
reinitialize.   

Another approach is to maintain the shadow condition across each integration step 
and correct for modeling errors when necessary.  This is the basis of the methods used by 
Hubbard and subsequently Lundberg, who derived analytical expressions for these 
corrections6.  Hubbard provided corrections for SRP effect on the state assuming a 
cylindrical shadow model and based on an assumption of a constant acceleration due to SRP 
during the integration step.  Lundberg extended Hubbard’s method for application to a 
conical shadow model and included the effect of differential two-body accelerations.  Both 
Hubbard and Lundberg implemented their correction schemes in conjunction with multi-
step integrators.  Lundberg also introduced the use of the interpolator equation of the multi-
step integrator to estimate the corrected state. 

An alternative method for correcting the state at the end of the integration step is to 
compute an update to the predicted state using an Encke-type integration about the current 
trajectory.  Using this technique, the difference from a known trajectory is computed by 
numerically integrating the difference in the accelerations.  The differences in accelerations 
in this case are the change in the SRP and the differential two-body acceleration.  Differences 
in other accelerations will be considered negligible based on the assumption that the 
correction to the state will be very small.  The differential equation for the correction to the 
state at the leading node of the integration procedure is9, 
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where rr is the corrected state, ρr is the uncorrected state and µ is the gravitational 

parameter.  κ is scale factor of the acceleration due to solar radiation pressure SRPar  which is 
set to the following 

 Sunlight  to   Umbra1=κ ,  

  UmbraoSunlight t   1−=κ ,  

 Penumbra   11 <<− κ   

and the state correction rr∆  is defined as 

 ρrrr
−=∆ rr . (2) 

The initial conditions for the Encke integration are 

 00 =∆rr , (3) 

 00 =∆r&r  (4) 

where the start time of the correction algorithm is the first time during the step when the 
actual lighting condition is different than the lighting condition used in the main integration 
procedure.  This condition occurs due to the fact that the lighting condition is held constant 
across steps of the main integration procedure.  The correction is computed by numerically 
integrating Eq. (1) from the correction start time until the end of the current step in the 
main integration procedure.  The first term in Eq.(1) is the difference in the two body 
accelerations between the corrected and uncorrected trajectories and the second term 
accounts for the improper modeling of the acceleration due to SRP during the main 
integration step.   

 An array of recently computed ephemeris is maintained during the main integration 
process for use in the computation of the shadow boundary crossing times.  These times are 
determined via an iterative procedure using interpolation of the stored array of ephemeris.  
The iterative procedure is terminated based on convergence to one millisecond for the 
cylindrical shadow model and 10 milliseconds for the dual cone shadow model.  A tighter 
convergence criterion was placed on the cylindrical model since the change in the 
acceleration due to SRP is more sudden during the crossing of the shadow boundary.  The 
interpolation method used in this study is 7th order Lagrangian interpolation.  Points along 
the reference trajectory for the Encke algorithm are also computed based on interpolation of 
the stored ephemeris.  While interpolation will not produce the same level of fidelity as the 
numerical integration procedure, the correction algorithm is not particularly sensitive to the 
interpolated values.  The overall effectiveness of the correction algorithm is not, therefore, 
adversely affected by the use of interpolation. 

 Each step of the correction procedure is restricted to a single lighting condition.  
When a cylindrical shadow model is used, a single correction step is taken.  When a dual cone 
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shadow model is used, one or two correction steps may be required.  The number of steps 
required to compute the correction depends on the number of shadow boundaries crossed. It 
is also important to note that the main integration procedure is configured to treat the 
penumbra condition the same as the umbra condition, setting the acceleration due to SRP to 
zero.  This treatment of the penumbra condition in the main integration procedure results in 
the need to apply the correction procedure over the entire step for any step of the main 
integration procedure starting in the penumbra condition.  The correction steps used in 
conjunction with the dual cone shadow model, based on the lighting conditions at the start 
and end of the main integration step, are given in Table 1.  When two correction steps are 
required, the correction computed during the first step is used as the initial conditions to the 
second correction step. 

TABLE 1. CORRECTION ALGORITHM FOR DUAL CONE SHADOW MODEL 

Start Condition End Condition Correction Step 1 Correction Step 2 

Sunlight Penumbra S/P to EOS None 

Sunlight Umbra S/P to P/U P/U to EOS 

Umbra Penumbra U/P to EOS None 

Umbra Sunlight U/P to P/S P/S to EOS 

Penumbra Sunlight SOS to P/S P/S to EOS 

Penumbra Umbra SOS to P/U P/U to EOS 

Penumbra Penumbra SOS to EOS None 

S/P, P/S – boundary between sunlight and penumbra 

P/U, U/P – boundary between penumbra and umbra 

SOS – start of main integration step,  EOS – end of main integration step 

 

IMPLEMENTATION 

The correction algorithm has been implemented in conjunction with both single step 
and multi-step integration procedures.  The single step procedures considered herein are the 
Runge-Kutta-Fehlberg 7-8 and the Bulirsch-Stoer[10,11]. The multi-step procedure is the 12th 
order Gauss-Jackson integrator using a Stormer predictor and a Cowell corrector[9,12].  
Application of the correction algorithm with the single step procedures is fairly 
straightforward.  The Encke correction is computed at the end of integration steps over 
which a change in the lighting condition has occurred.  The correction is then added to the 
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current state at the leading node of the integration process and the main integration process 
is continued. 

The process is significantly more complicated when a multi-step integrator is used.  
The additional complication results from the fact that the multi-step integrator uses 
acceleration data from prior steps to predict and correct estimates of the state at the next 
integration node.  When the lighting condition changes during a particular step of the 
integrator, the set of accelerations for points going into the future are inconsistent with the 
stored accelerations at prior integration nodes.  To account for this problem, the method of 
modified back differences is employed to add or subtract the SRP accelerations from the 
table of stored accelerations depending on whether the trajectory is entering or leaving the 
sunlit region of space.  To illustrate the quantities in need of update, the Stormer prediction 
equation is presented as: 
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where h is the step size, II
nS

r
 is the vector of second sums of the accelerations and iC  are 

coefficients specific to the order of the integration.  To facilitate the addition or subtraction 
of accelerations due to SRP, the SRP accelerations are computed without a shadow model at 
each integration node and stored in parallel with the back acceleration table. The total 
acceleration at the current node must also be updated to account for the difference in the 
two-body acceleration, which results from the state correction6.  Differences in other 
perturbing accelerations resulting from the update of the state at the leading node are 
assumed to be small and are not computed. Finally, the first and second sums must be 
reconstructed based upon the updated state at the leading node and the updated acceleration 
table.  At this point the back acceleration table and sums include data that is consistent with 
the accelerations experienced during the forward integration process.  The updated table is 
still not internally consistent, however, since the tabulated accelerations were computed at 
positions that would not be achieved by propagating backwards with the new accelerations.  
This issue is a potential subject for further study.  

TEST CASES 

A set of test cases for LEO orbits was run to determine the effectiveness of the 
correction algorithm.  The initial conditions for the test cases are given in Table 2. 

TABLE 2. INITIAL CONDITIONS 

Epoch a     
(km) 

e I 
(deg) 

Ω            
(deg) 

ω 
(deg) 

ν 
(deg) 

Cp A/M 
(m2/kg) 

SC Step 
Size (sec) 

1 Jun 2000 
00:00:00 

7000.0 0.0 55.0 220.0->280.0 
steps of 5.0 

0.0 90.0 2.0 0.02 30.0 

The initial conditions in Table 2 are identical to those used in a previous study with the 
exception of the initial true anomaly5.  The reason for the change in the initial true anomaly 
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is to avoid a change in lighting condition before a sufficient history of integrated points has 
been produced to support accurate interpolation.  The test cases were run with both 
cylindrical and conical shadow models using the integration procedures listed in Table 3.   

TABLE 3. INTEGRATION METHODS 

Method Order ODE order Type 

Runge-Kutta-Fehlberg 7-8 (RK) 7 1st Single step 

Bulirsch-Stoer (BS) N/A 1st Single step 

Stormer-Cowell (SC) 12 2nd Multi-step 

 

Table 4 contains reference data that was generated to provide a measure of the 
achievable accuracy of each combination of integration procedure and equations of motion.  
In Table 4, the abbreviation COW is used to indicate that the equations of motion were of 
the Cowell’s formulation and the abbreviation VOP is used to indicate that the equations of 
motion were the variation of parameters formulation in universal variables as describe by 
Herrick13.  Trajectories were generated for each set of initial conditions including the effects 
of SRP in the absence of a shadow model.  The RK and BS integrators were allowed to vary 
the step size during the integration.  The SC integrator was run with a fixed step size, which 
was selected to ensure accurate trajectories.  The accuracy of the trajectories was determined 
via comparison with a set of trajectories integrated with the RK integrator at the fixed step 
size of five seconds. Any degradation of accuracy observed when shadow models are used 
can be considered to be a result of the interplay between the shadow model and the 
integrator. 

TABLE 4. REFERENCE ACCURACY 

Combination Minimum 
Error (mm) 

Maximum 
Error (mm) 

Average 
Error (mm) 

BS/COW 0.005 0.13 0.058 

BS/VOP 0.017 0.066 0.038 

RK/COW 0.17 0.19 0.18 

RK/VOP 2.3 8.5 5.3 

SC/COW 0.001 0.011 0.004 
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The information in Table 4 shows that the various combinations of integrators and 
force models are consistent to a level of less than one centimeter over a day.  The level of 
agreement would be less than 0.2 millimeter without the RK/VOP formulation.  This is 
indicative of a slight problem in the error control of the RK integrator when it is combined 
with the VOP formulation of the equations of motion.  The errors encountered when the 
shadow models were included are shown in Table 5.  In Table 5, the abbreviation CYL is used 
to indicate that a cylindrical shadow model was used and DC is used to indicate that a dual 
cone shadow model was used.  It is also important to note that the quantities in Table 5 are 
expressed in meters while the quantities in Table 4 were expressed in millimeters. 

TABLE 5. TRAJECTORY ERRORS WITH NO MITIGATION 

Combination Minimum 
Error (m) 

Maximum 
Error (m) 

Average 
Error (m) 

BS/COW/CYL 0.15 2.0 0.84 

BS/COW/DC 0.084 5.1 1.4 

BS/VOP/CYL 0.53 1.7 0.62 

BS/VOP/DC 0.15 1.9 0.78 

RK/COW/CYL 0.044 1.6 0.52 

RK/COW/DC 0.010 0.52 0.30 

RK/VOP/CYL 0.26 3.2 1.4 

RK/VOP/DC 0.18 2.3 1.1 

SC/COW/CYL 0.18 1.4 0.54 

SC/COW/DC 0.033 0.57 0.26 

 

The same trajectories were computed using the Encke correction algorithm and the 
resulting trajectory errors are shown in Table 6.  Note that the errors are expressed in 
millimeters as they were in Table 4.  The results of Table 6 indicate the application of the 
correction algorithm removed almost all of the error introduced during the crossing of the 
shadow boundaries.  The corrections appear to work equally well for Cowell and VOP 
formulations and for the cylindrical and dual cone shadow models.  The largest errors are 
seen for the RK integration method paired with the VOP formulation of the equations of 
motion, but the error levels are not significantly different than those documented in the 
accuracy reference results of Table 4.  This indicates that the majority of the error in the 
RK/VOP cases do not result from crossing shadow boundaries. The reference trajectories 
for the errors documented in Table 6 were generated using the RK/COW formulation with a 
five second step size.  The integrator was also stopped on the shadow boundaries and 
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restarted during the computation of the reference trajectories.  The process of stopping the 
integrator on the shadow boundary was subject to the same convergence limits as used in the 
Encke correction algorithm. 

TABLE 6. TRAJECTORY ERRORS WITH MITIGATION 

Combination Minimum 
Error (mm) 

Maximum 
Error (mm) 

Average 
Error (mm) 

BS/COW/CYL 0.19 1.7 1.0 

BS/COW/DC 0.21 1.7 1.1 

BS/VOP/CYL 0.12 1.7 0.98 

BS/VOP/DC 0.17 1.7 1.0 

RK/COW/CYL 0.13 0.15 0.14 

RK/COW/DC 0.095 0.18 0.14 

RK/VOP/CYL 3.4 9.1 5.7 

RK/VOP/DC 3.5 8.8 5.4 

SC/COW/CYL 1.6 2.4 2.0 

SC/COW/DC 0.90 1.5 1.2 

 

Statistics of the magnitude of the position and velocity corrections computed by the 
Encke correction algorithm were computed during the integration of the test cases for Table 
6 and are presented in Table 7.  The small magnitude of the observed corrections justifies the 
previous assumption that corrections to additional perturbing forces were not required 
during the update of the leading node accelerations for the multi-step integrator. 

TABLE 7. MAGNITUDE OF ENCKE CORRECTIONS 

 Minimum  Maximum  Average  

Position 0.0 mm 7.9 mm 1.2 mm 

Velocity 0.0 mm/s 0.053 mm/s 0.014 mm/s 
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CONCLUSIONS 

 A new approach to the mitigation of trajectory integration errors incurred during the 
crossing of shadow boundaries has been developed.  The new approach holds the lighting 
condition constant across each step in the integration process.  An Encke-type correction 
algorithm is then used to compensate for errors in the main integration process resulting 
from improper modeling of accelerations due to SRP.  A study of a group of LEO 
trajectories has demonstrated the successful application of the mitigation procedure in 
conjunction with three different procedures for numerical integration including both single 
step and multi-step methods.  The correction algorithm could be abstracted to provide 
corrections for other accelerations capable of experiencing sudden changes in form or 
magnitude. 
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