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There has been a growing interest in spacecraft formation-flying for space science appli-
cations. Such missions will require an accurate and efficient dynamics model, within the
guidance system, to calculate and control the desired relative motion. This paper achieves an
accurate analytical solution of relative motion between two spacecraft using relative classical
orbital elements. The analytical solution is obtained by propagating the relative orbital ele-
ments forward in time, while taking into account gravitational field up to the fifth harmonic,
third-body and drag, and calculating the relative motion in the local-vertical-local-horizontal
reference frame at each time-step. Specifically, the solution proposed in this paper requires
only a single matrix multiplication with the initial orbital elements and the desired time to
compute the relative motion, since the solution utilized Jacobian matrices evaluated at the
target spacecraft’s initial orbital elements which need only be calculated once. The analytical
solution was observed to accurately describe the relative motion when compared with a nu-
merical simulator, yielding errors on the order of meters for separation distances on the order
of thousands of meters. Additionally, the solution maintained accurate tracking performance
when used within a back-propagation guidance law.

I. Introduction

Space science missions, such as mapping other planets and moons, require the reduction of costs and an improvement
of efficiency to meet the world’s growing interest [1]. Formation flying of multiple spacecraft is a vital technology

for such missions as it offers lower costs and increased efficiency by reducing the mass, power demand and size of the
space buses. European Space Agency’s Proba-3 mission will use two spacecraft flying in formation in attempt to study
the sun by creating an artificial solar eclipse [2]. However, formation flying has many considerations to be taken into
account when compared to that of single spacecraft missions. The main considerations are with regards to the guidance
systems, since they are responsible for calculating and controlling the desired relative motion between the spacecraft. To
ensure accuracy, the guidance system must take into account perturbations since ignoring orbital perturbations in the
design of the reference trajectories would result in additional propellant consumption to force the follower spacecraft
to follow the reference trajectory. Furthermore, the dynamics model must be accurate for high eccentricity values,
and large separation distances while remaining computationally in-expensive for on-board implementation purposes.
Accurate numerical models which take into account perturbations exist; however, they are computationally expensive
and can lead to errors due to integration tolerances. Therefore, an analytical dynamics model is required since it satisfies
these conditions and does not require numerical integration. Formulations which take into account perturbations, such
as gravitational field caused by oblateness of the earth, third body effects, and drag, exist in literature. The gravitational
perturbation is particularly important when modeling orbits as it causes rotation of the line of apsides and precession of
the line of nodes, along with changes in inclination and eccentricity values. In terms of the third body perturbation, it
is important when modeling higher altitude orbits since it also causes rotation of the line of apsides and precession
of the line of nodes. Finally, drag is important when modeling LEO (low earth orbits) since drag acts in the opposite
direction to the velocity vector and hence reduces the orbital energy which in turn reduces the orbital semi-major axis
and eccentricity such that the spacecraft slowly spirals down into Earth or any other planet with an atmosphere.

The most used analytical model in formation flying is the Hill-Clohessy-Wiltshire (HCW) model [3], which
provides linearized relative dynamics based upon exact non-linear differential equations of motion in the LVLH
(Local-vertical-local-horizontal) reference frame. The HCW model, due to the fact they are linearized equations of
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motion and time invariant, is perfect for the application of a linear state feedback controller design such as optimal
feedback control method and linear quadratic regulator (LQR) method. [4] However, the model only works for circular
Keplerian orbits as it does not take into account perturbations and simplifications made in the derivation causes it
to be in-accurate for modeling elliptical reference orbits. When applying an eccentric reference orbit to the HCW
model, the errors increase with increasing eccentricity and it has been shown that the effect neglecting eccentricity
in the HCW model greatly outweighs the effect of external perturbations. [5] Furthermore, the linear-time-invariant
(LTI) HCW equations were extended by Inalhan, et al. [5] to include arbitrary eccentricity by reformulating the HCW
as linear-parameter-varying (LPV) which enables the use LPV control techniques, such as model predictive control.
An analytical solution, which was first suggested by Hill [6] that incorporates Keplerian eccentric orbits and valid
for any time-step, was formulated by Gurfil and Kholshevnikov. [7, 8] The solution uses classical orbital elements as
constant parameters to calculate the relative dynamics of a chaser spacecraft, analogous to a simple rotation matrix
approach, instead of cartesian initial conditions used in the HCW model. The most important advantage of using this
approach is the fact that the orbital elements can be made to vary as a function of time to include the effects of orbital
perturbations [9, 10]. Furthermore, Schaub extended Gurfil and Kholshevnikov’s equations through linearizations such
that the cartesian coordinates in the LVLH reference frame are expressed in terms of orbital element differences [11].
Another analytical solution, proposed by Mahajan, et al. [12], uses linearized state transition matrices to propagate the
relative mean orbital elements forward in time while taking into account the effects of gravitation field perturbation up
to an arbitrary selected degree. Additionally, Guffanti, et al. introduced a set of state transition matrices which included
the effects of the second and third zonal harmonics, third body, and solar radiation pressure where non-singular orbital
elements were used as the states [13].

The work presented in this paper focuses on third body effects of the sun and moon, drag and gravitational up to
fifth zonal harmonic using a similar state transition matrix development technique presented by Guffanti, et al.[13]
and Mahajan, et al. [12]. The third body linearized equations used were formulated by Prado [14, 15] and Kozai
[16, 17] formulated linearized equations for effects of lunisolar perturbations on orbital elements, and Blitzer [18]
formulated equations for drag. Furthermore, Brouwer [19], Liu [20], and Kozai [21] formulated equations for the
gravitational perturbation up to fifth zonal harmonic (J5). Specifically, this work build’s upon the work of Kuiack and
Ulrich [22], where they implemented linearized short periodic and secular variations of the orbital elements formulated
by Brouwer for the second zonal harmonic (J2) [19] into Gurfil and Kholshevnikov’s equations of motion [7, 8]. Using
this formulation, Kuiack and Ulrich implemented a back propagation technique such that a set of initial conditions for
the chaser spacecraft in terms of orbital elements is found to allow the spacecraft to drift into a desired relative orbital
elements [22]. The work presented in this paper aims to provide a simple, yet sophisticated method of implementing
back propagation and forward propagation guidance laws. Although simpler than more sophisticated methods being
developed for propagating perturbed relative motion analytically, this paper may provide a slightly different viewpoint
on developing relative motion methodologies. Specifically, the methodology presented here lends itself to a relative
motion viewpoint involving relative distances, or metrics, as the work is a direct continuation of the methods presented
by Kuiack and Ulrich’s back propagation guidance law [22]. However, one of the key differences is the state-transition
matrix approach and the determination of relative orbital elements using desired Cartesian coordinates instead.

II. Linearized Equations of Relative Motion using Relative Orbital Elements
The non-linear equations of motion formulated by Gurfil and Kholshevnikov provides a method of calculating the

relative motion of two spacecraft in the LVLH reference frame using each spacecraft’s orbital elements. [7, 8] The
LVLH reference frame is denoted by FL and defined by its orthonormal unit vectors [®Lx, ®Ly, ®Lz]

T with its origin at the
target spacecraft. The unit vector ®Lz points in the same direction as the orbit’s angular momentum vector normal to
the orbital plane. ®Lx points in the direction of the target’s inertial position ®rt and ®Ly completing the triad such that
®Ly = ®Lz × ®Lx . However, orbital elements cannot be determined from Cartesian coordinates using these equations which
means these equations cannot be used to determine relative orbital elements using a set of desired Cartesian coordinates.
Therefore, a set of linearized equations that describe the relative motion must be used. Schaub derives the linearized
equations of motion using a first order approximation and is presented in state-space form below [11]

ρ =
[
x y z

]T
= A1∆x (1)
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such that ®ρ = ρT ®FL and

x =
[
a e i ω Ω M

]T
(2)

A1 =


rt
at

−at cos θt 0 0 0 at et sin θt√
1−et 2

0 rt sin θt
1−et 2 (2 + et cos θt ) 0 rt rt cos it

rt
(1−et 2)3/2

0 0 rt sin θt 0 −rt cos θt sin θt 0

 (3)

The classical orbital elements, denoted by a, e, i, ω, Ω and M represent the semi-major axis, eccentricity, inlination,
argument of perigee, right ascension of the ascending node, and mean anomaly respectively. The variable ∆x contains
the difference in orbital elements between the chaser and the target spacecraft such that ∆x = xc − xt , where the
subscripts c and t denote the chaser and target respectively.

Schaub also derives equations for relative velocity in the LVLH reference frame, however; they are derived in terms
of non-singular orbital elements. The linearized equations relating relative orbital elements to relative velocity are
herein derived by taking the time derivative of Equation (1) shown below

Ûρ =
[
Ûx Ûy Ûz

]T
=

(
d
dt

A1

)
∆x + A1∆ Ûx (4)

It will be shown in the following section that ∆ Ûx = F∆x, where F contains the combined keplerian and perturbing
effects. The relative velocity in LVLH can be simplified as

Ûρ =
( [
A21 A22

]
+ A1F

)
∆x (5)

where

A21 =


Ûrt
at

at Ûθt sin θt 0

0
1

1−et 2 [ Ûrt sin θt (2 + et cos θt )+
Ûθt cos θtrt (2 + et cos θt ) + sin θtrt (2 − et Ûθt sin θt )]

0

0 0 Ûrt sin θt + rt Ûθt cos θt


(6)

A22 =


0 0 at et Ûθt cos θt√

1−et 2

Ûrt Ûrt cos it
Ûrt

(1−et 2)3/2

0 −Ûrt cos θt sin θt + rt Ûθt (sin θt + cos θt ) 0

 (7)

The target’s position, velocity and true anomaly rate magnitudes (rt , Ûrt , and Ûθt ) are calculated as follows

rt =
at (1 − et2)

1 + et cos θt
(8)

Ûrt =
√

µ

at (1 − et2)
et sin(θt ) (9)

Ûθt =

√
µat (1 − et2)

rt2
(10)

where θt is the target’s true anomaly.
Since the equations shown above are functions of the true anomaly, θ, a way of computing it is required. Gurfil and

kholshevnikov [7] proposed to numerically integrate for the time derivative of the true anomaly, but the purpose of
this paper is to provide a fully analytical solution. Many solutions to obtain the true anomaly from the mean anomaly,
eccentric anomaly and the orbit’s eccentricity exist. Vallado illustrates many of these methods, including a method that
uses modified Bessel functions of the first kind paired with the eccentricity and mean anomaly to solve for the true
anomaly [23]. Kuiack and Ulrich[22] modified Gurfil and Kholeshnikov’s solution to include a analytical approximation
for the true anomaly in terms of the eccentric anomaly. The simple recursive solution is given by

E = M + e sin(M + e sin(M + e sin(M + ... + e sin(M)))) (11)
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cos θ =
cos E − e

1 − e cos E
(12)

sin θ =
√

1 − e2 sin E
1 − e cos E

(13)

θ = tan−1 sin θ
cos θ

(14)

where E is the eccentric anomaly. This is a recursive solution based on the Newton-Raphson Iteration Technique∗ which
implies an infinite series. Therefore, a term will become truncated based on the desired accuracy. The mean anomaly
can be found by

M = M0 + ÛM(t f − t0) (15)

ÛM = n =
√

µ

a3 (16)

This formulation assumes a keplerian orbit and one can incorporate perturbations by adding secular variations such that
the target’s orbital elements varies with time which slightly improves the accuracy of the solution. The main perturbing
affects lie within the relative orbital elements as will be shown in the following sections.

III. State Transition Matrix Formulation
This section presents the formulation used to create the state transiton matrix that maps the states at a time t f to the

initial states at t0. To first formulate the state transition matrix the system dynamics must be defined by the derivative of
the state vector, Ûx, as a function of the states

Ûx =
[
Ûa Ûe Ûi Ûω ÛΩ ÛM

]T
= f (x) (17)

and the function is the combination of keplerian and total perturbing effects considered represented by

f (x) = fkep(x) +
∑

fperturb(x) (18)

where

fkep(x) =
[
0 0 0 0 0 n

]T
(19)

fperturb(x) =
[
Ûaperturb Ûeperturb Ûiperturb Ûωperturb

ÛΩperturb
ÛMperturb

]T
(20)

The system dynamics can now be expressed in terms of relative orbital elements by taking the Jacobian of eq. (17) as
such

∆ Ûx = F(x)∆x (21)

where
F(x) =

∂F(x)

∂x

����
x=xt

(22)

Now that the system dynamics have been defined, it can be linearized through a Taylor series expansion about the
target’s states such that

∆x f =

[
I6×6 + F(x)∆t +

F2(x)

2!
∆t2 +

F3(x)

3!
∆t3...

]
∆x0 (23)

where ∆t = t f − t0 and the Jacobian matrix F(x) is evaluated at the target’s initial states. The Keplerian Jacobian is
found as

∗http://web.mit.edu/10.001/Web/Course_Notes/NLAE/node6.html
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Fkep(x) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1.5n/a 0 0 0 0 0


(24)

Recently, Kuiack and Ulrich [22] developed a model which only includes the second zonal harmonic in terms of
its secular and short periodic variations based off of Brouwer’s [19] gravitational equations. Vinti [24] expanded on
Brouwer’s [19] and Kozai’s [21] work to include the effects of the residual fourth zonal harmonic. In addition, an
analytical relative dynamics for a J2 perturbed elliptical orbit was formulated by Hamel and Lafontaine [25] but only
included secular variations of RAAN, argument of perigee and mean anomaly. Liu [20] expanded on Brouwer’s and
Kozai’s work to include secular variations of eccentricity and inclination, and concluded that their effects are small
(about 0.5% more accurate). This paper uses the secular equations reformulated by Liu [20] and also given by Vallado
[23] as a basis to derive the gravitational field Jacobian matrices FJ (x). The Jacobian matrix was derived, based on
Liu’s model [20], as

FJ (x) =



0 0 0 0 0 0
FJ

21 FJ
22 FJ

23 FJ
24 0 0

FJ
31 FJ

32 FJ
33 FJ

34 0 0
FJ

41 FJ
42 FJ

43 0 0 0
FJ

51 FJ
52 FJ

53 0 0 0
FJ

61 FJ
62 FJ

63 0 0 0


(25)

where

FJ
21 =

1
64a8(e2 − 1)3n

[
3R3

E µ sin(i)(144J3a cos(ω) − 180J3a cos(ω) sin2(i) − 144J3ae2 cos(ω))

+ +165J2
2 REe sin(2ω) sin3(i) + 330J4REe sin(2ω) sin(i) + 180J3ae2 cos(ω) sin2(i)

+ −154J2
2 REe sin(2ω) sin(i) − 385J4REe sin(2ω) sin3(i)

] (26)

FJ
22 = −

1
32a4(e2 − 1)3

[
3J2

2 R4
E sin(2ω) sin2(i)n(15 sin2(i) − 14) + 15J4R4

E sin(2ω) sin2(i)n(7 sin2(i) − 6)
]

+
1

16a4(e2 − 1)4
[
9J2

2 R4
Ee2 sin(2ω) sin2(i)n(15 sin2(i) − 14) − 45J4R4

Ee2 sin(2ω) sin2(i)n(7 sin2(i) − 6)
]

+
3J3R3

Ee cos(ω) sin(i)n(5 sin2(i) − 4)
2a3(e2 − 1)3

(27)

FJ
23 = −

1
(8a4(e2 − 1)3)

[
3R3

E cos(i)n(4J3a cos(ω) − 15J3a cos(ω) sin2(i) − 4J3ae2 cos(ω)

+ −15J2
2 REe sin(2ω) sin3(i) + 15J4REe sin(2ω) sin(i) + 15J3ae2 cos(ω) sin2(i)

+ +7J2
2 REe sin(2ω) sin(i) − 35J4REe sin(2ω) sin3(i))

] (28)

FJ
24 =

1
16a4(e2 − 1)3

[
15J4R4

Ee cos(2ω) sin2(i)n(7 sin2(i) − 6) − 3J2
2 R4

Ee cos(2ω) sin2(i)n(15 sin2(i) − 14)
]

+
3J3R3

E sin(i) sin(ω)n(5 sin2(i) − 4)
8a3(e2 − 1)2

(29)
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FJ
31 = −

3R3
Eeµ

128a8(e2 − 1)4n

[
360J3a cos3(i) cos(ω) − 72J3a cos(i) cos(ω) + 154J2

2 REe sin(2i) sin(2ω)

+ +72J3ae2 cos(i) cos(ω) − 360J3ae2 cos3(i) cos(ω) + 330J4REe sin(2i) sin(2ω)

+ −330J2
2 REe sin(2ω) cos(i) sin3(i) − 770J4REe sin(2ω) cos(i) sin3(i)

] (30)

FJ
32 =

3J2
2 R4

Ee3 sin(2i) sin(2ω)n(15 sin2(i) − 14)
8a4(e2 − 1)5

+
15J4R4

Ee3 sin(2i) sin(2ω)n(7 sin2(i) − 6)
8a4(e2 − 1)5

−
15J4R4

Ee sin(2i) sin(2ω)n(7 sin2(i) − 6)
32a4(e2 − 1)4

−
3J2

2 R4
Ee sin(2i) sin(2ω)n(15 sin2(i) − 14)

32a4(e2 − 1)4

−
3J3R3

E cos(i) cos(ω)n(5 cos2(i) − 1)
8a3(e2 − 1)3

+
9J3R3

Ee2 cos(i) cos(ω)n(5 cos2(i) − 1)
4a3(e2 − 1)4

(31)

FJ
33 =

1
16a4(e2 − 1)4

[
3R3

Ee cos(ω)n(30J3a sin3(i) − 28J3a sin(i) − 30J3ae2 sin3(i) + 30J4REe sin(ω)

+14J2
2 REe sin(ω) + 28J3ae2 sin(i) − 165J4REe sin2(i) sin(ω) + 140J4REe sin4(i) sin(ω)

−73J2
2 REe sin2(i) sin(ω) + 60J2

2 REe sin4(i) sin(ω))
] (32)

FJ
34 =

3J3R3
Ee cos(i) sin(ω)n(5 cos2(i) − 1)

8a3(e2 − 1)3
−

3J2
2 R4

Ee2 cos(2ω) sin(2i)n(15 sin2(i) − 14)
32a4(e2 − 1)4

−
15J4R4

Ee2 cos(2ω) sin(2i)n(7 sin2(i) − 6)
32a4(e2 − 1)4

(33)

FJ
41 = −

3R2
E µ

256a8(e2 − 1)4n

[
3520J4R2

E + 896J2a2 + 3960J4R2
Ee2 − 1792J2a2e2 + 896J2a2e4 + 616J2

2 R2
Ee2

− 13640J4R2
E sin2(i) + 10780J4R2

E sin4(i) − 1120J2a2 sin2(i) + 8360J2
2 R2

E sin2(i)

− 9790J2
2 R2

E sin4(i) − 13860J4R2
Ee2 sin2(i) + 10395J4R2

Ee2 sin4(i) + 2240J2a2e2 sin2(i)

− 1120J2a2e4 sin2(i) − 396J2
2 R2

Ee2 sin2(i) − 495J2
2 R2

Ee2 sin4(i)
]

(34)

FJ
42 = −

3R2
Een

64a4(e2 − 1)5
[
1640J4R2

E + 256J2a2 + 56J2
2 R2

E + 1080J4R2
Ee2 − 512J2a2e2 + 256J2a2e4

+ 168J2
2 R2

Ee2 − 6220J4R2
E sin2(i) + 4865J4R2

E sin4(i) − 320J2a2 sin2(i) + 3004J2
2 R2

E sin2(i)

− 3605J2
2 R2

E sin4(i) − 3780J4R2
Ee2 sin2(i) + 2835J4R2

Ee2 sin4(i) + 640J2a2e2 sin2(i)

− 320J2a2e4 sin2(i) − 108J2
2 R2

Ee2 sin2(i) − 135J2
2 R2

Ee2 sin4(i)
]

(35)

FJ
43 = −15J4R4

En
[
2 cos(i) sin(i)(252e2 + 248) − 4 cos(i) sin3(i)(189e2 + 196)

128a4(e2 − 1)4

]
− 3J2

2 R4
En

[
2 cos(i) sin(i)(36e2 − 760) + 4 cos(i) sin3(i)(45e2 + 890)

128a4(e2 − 1)4

]
−

15J2R2
E cos(i) sin(i)n

2a2(e2 − 1)2

(36)

FJ
51 =

3R2
E µ cos(i)

64a8(e2 − 1)4n

[
330J4R2

E + 112J2a2 + 748J2
2 R2

E + 495J4R2
Ee2 − 224J2a2e2 + 112J2a2e4

+ 99J2
2 R2

Ee2 − 770J4R2
E cos2(i) − 880J2

2 R2
E cos2(i)2 − 1155J4R2

Ee2 cos2(i) − 55J2
2 R2

Ee2 cos2(i)
] (37)

FJ
52 =

3R2
Ee cos(i)n

16a4(e2 − 1)5
[
32J2a2 − 220J4R2

E − 44J2
2 R2

E − 180J4R2
Ee2 − 64J2a2e2 + 32J2a2e4

+ 12J2
2 R2

Ee2 + 385J4R2
E sin2(i) + 325J2

2 R2
E sin2(i) + 315J4R2

Ee2 sin2(i) + 15J2
2 R2

Ee2 sin2(i)
] (38)
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FJ
53 =

3R2
E sin(i)n

32a4(e2 − 1)4
[
16J2a2 − 180J4R2

E − 172J2
2 R2

E − 270J4R2
Ee2 − 32J2a2e2 + 16J2a2e4

− 6J2
2 R2

Ee2 + 210J4R2
E sin2(i) + 240J2

2 R2
E sin2(i) + 315J4R2

Ee2 sin2(i) + 15J2
2 R2

Ee2 sin2(i)
] (39)

FJ
61 = −

1
1024a8(1 − e2)9/2n

[
52800J2

2 R4
E µ sin2(i) − 69168J2

2 R4
E µ sin(i)4 + 10560J2

2 R4
Ee2µ

+ −9240J2
2 R4

Ee4µ − 5376J2R2
Ea2µ(e2 − 1)3 − 51744J2

2 R4
Ee2µ sin2(i) + 35376J2

2 R4
Ee2µ sin(i)4

+ +10824J2
2 R4

Ee4µ sin2(i) + 2607J2
2 R4

Ee4µ sin(i)4 + 15840J4R4
Ee2µ(e2 − 1)

+ +8064J2R2
Ea2µ sin2(i)(e2 − 1)3 − 79200J4R4

Ee2µ sin(i)(e2 − 1)

+ +69300J4R4
Ee2µ sin2(i)(e2 − 1)

]
(40)

FJ
62 = 3J2

2 R4
En

640e − 1120e3 + sin4(i)(316e3 + 2144e) − sin2(i)(−1312e3 + 3136e)
512a4(1 − e2)9/2

−
9J2R2

Een(3 sin2(i)2 − 2)
4a2(1 − e2)5/2

−
45J4R4

Een(35 sin2(i) − 40 sin(i) + 8)
64a4(1 − e2)7/2

+ 27J2
2 R4

Een
[
sin4(i)(79e4 + 1072e2 − 2096) + sin2(i)(328e4 − 1568e2 + 1600) + 320e2 − 280e4

512a4(1 − e2)11/2

]
−

315J4R4
Ee3n(35 sin2(i) − 40 sin(i) + 8)

128a4(1 − e2)9/2

(41)

FJ
63 = 3J2

2 R4
En

[
4 cos(i) sin3(i)(79e4 + 1072e2 − 2096) + 2 cos(i) sin(i)(328e4 − 1568e2 + 1600)

512a4(1 − e2)9/2

]
+ 45J4R4

Ee2n
40 cos(i) − 70 cos(i) sin(i)

128a4(1 − e2)7/2
−

9J2R2
E cos(i) sin(i)n

2a2(1 − e2)3/2

(42)

where J2, J3 and J4 are the second, third and fourth zonal harmonics respectively, RE is the mean radius of the Earth, µ
is the gravitational constant of Earth and n is the mean orbital motion of the satellite.

The effects of third body perturbations on satellite orbits has been studied extensively in the past and continues
to be in the present. Kozai [17] developed the first secular and long-periodic equations on the effects of luni-solar
perturbations on a satellite’s orbital elements in 1959 based on the assumption that the distance of the satellite from the
Earth was very small compared to the moon and that the moon’s orbit is circular. Those equations were re-visited by him
in 1973 to include short periodic terms [16]. Smith [26, 27] extended Kozai’s theory to include secular changes for a
third body in an elliptical orbit and found that for NASA’s Echo 1 mission in 1960, the perigee radius decreased as much
as 100 meters over 25 days. Luni-solar effects on orbital elements were also developed by Cook [28] in 1961 who also
included the effects of solar radiation pressure, Kaula [29] in 1962 and Giacagla[30] in 1974 who also developed secular
and periodic variations. Furthermore, Musen, et al. [31] expanded on Kozai’s theory in 1961 where they observed
that the third body perturbation causes the perigee height of a satellite to increase with periodic variations over long
durations (20 km increase over approximately one month duration) due to third body effects on eccentricity. Recently,
Domingos, et al. [15] and Prado [14], developed a simplified analytical model for a satellite’s orbital elements based on
the third body disturbing function expanded in Legendre polynomials up to fourth order. Specifically, the developed
analytical model double averaged the expanded disturbing function over the satellite’s orbital period and then again over
the third body’s. The third body Jacobian matrix derived in this work, based on Prado’s double averaged model [14]
expanded to the fourth order, is provided as

F3rd(x) =



0 0 0 0 0 0
F3rd

21 F3rd
22 F3rd

23 F3rd
24 0 0

F3rd
31 F3rd

32 F3rd
33 F3rd

34 0 0
F3rd

41 F3rd
42 F3rd

43 F3rd
44 0 0

F3rd
51 F3rd

52 F3rd
53 F3rd

54 0 0
F3rd

61 F3rd
62 F3rd

63 F3rd
64 0 0


(43)
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where

F3rd
21 =

45eµKn′
2
(1 − e2)1/2

16384a4a′2 n

[
588a2 sin(2ω) + 294a2e2 sin(2ω) + 3087a2e2 sin(4ω)

+ 784a2 cos(2i) sin(2ω) + 1024a′
2
sin(2ω) sin2(i) + 392a2e2 cos(2i) sin(2ω) − 4116a2e2 cos(2i) sin(4ω)

]

(44)

F3rd
22 = −

15Kn′
2

8192(1 − e2)1/2a′2 n

[
126a2e2 sin(2ω) − 252a2 sin(2ω) − 3969a2e2 sin(4ω) + 504a2e4 sin(2ω)

+5292a2e4 sin(4ω) − 336a2 cos(2i) sin(2ω) − 1024a′
2
sin(2ω) sin2(i) + 168a2e2 cos(2i) sin(2ω)

+5292a2e2 cos(2i) sin(4ω) + 672a2e4 cos(2i) sin(2ω) − 7056a2e4 cos(2i) sin(4ω) + 2048a′
2
e2 sin(2ω) sin2(i)

]
(45)

F3rd
23 = −

15eKn′
2
(1 − e2)1/2

1024a′2 n

[
84a2 sin(2i) sin(2ω) − 256a′

2
sin(2ω) cos(i) sin(i) + 42a2e2 sin(2i) sin(2ω)

− 441a2e2 sin(2i) sin(4ω)
] (46)

F3rd
24 =

15eKn′
2 cos(2ω) sin2(i)(1 − e2)1/2

4n
+

9a2Kn′
2
(1 − e2)1/2

65536a′2 n

[
2e3 cos(2ω)(4480 cos2(i) − 560)

− 4e3(2 cos2(2ω) − 1)(47040 cos2(i) − 41160) + 2e cos(2ω)(8960 cos2(i) − 1120)
] (47)

F3rd
31 = −

45e2Kn′
2 sin(2ω) cos(i)

8192aa′2 sin(i)(1 − e2)1/2n

[
784a2 cos2(i) − 512a′

2
cos2(i) − 98a2 + 512a′

2
− 49a2e2

+ 392a2e2 cos2(i) + 7203a2e2 cos(2ω) − 8232a2e2 cos(2ω) cos2(i)
] (48)

F3rd
32 = −

15eKn′
2 sin(2ω) cos(i)

4096a′2 sin(i)(1 − e2)(3/2)n

[
672a2 cos2(i) + 1024a′

2
sin2(i) − 84a2 − 42a2e2 + 63a2e4

+ 336a2e2 cos2(i) − 504a2e4 cos2(i) + 12348a2e2 cos(2ω) − 9261a2e4 cos(2ω) − 512a′
2
e2 sin2(i)

− 14112a2e2 cos(2ω) cos2(i) + 10584a2e4 cos(2ω) cos2(i)
] (49)

F3rd
33 = −

15e2Kn′
2 sin(2ω)

4096a′2 (1 − e2)1/2(cos2(i) − 1)n

[
1008a2 cos2(i) − 672a2 cos4(i) − 1536a′

2
cos2(i)

+ 1024a′
2
cos4(i) − 42a2 + 512a′

2
− 21a2e2 + 504a2e2 cos2(i) − 336a2e2 cos4(i)

+ 3087a2e2 cos(2ω) − 10584a2e2 cos(2ω) cos2(i) + 7056a2e2 cos(2ω) cos4(i)
] (50)

F3rd
34 = −

15e2Kn′
2 cos(2ω) cos(i) sin(i)
4(1 − e2)1/2n

−
9a2Kn′

2 cos(i)
65536a′2 sin(i)(1 − e2)1/2n

[
2e4 cos(2ω)(4480 cos2(i) − 560)

+ 2e2 cos(2ω)(8960 cos2(i) − 1120) − 4e4(2 cos(2ω)2 − 1)(47040 cos2(i) − 41160)
] (51)

F3rd
41 =

9µKn′
2

16384a4a′2 (1 − e2)1/2n3

[
54880a2 cos4(i) − 40320a2 cos2(i) + 5120a′

2
cos2(i) − 980a2 cos(2ω)

+ 5120a′
2
cos(2ω) + 3360a2 − 1024a′

2
− 36855a2e2 + 33495a2e4 + 1024a′

2
e2 + 15960a2e2 cos2(i)

+ 68600a2e2 cos4(i) + 12600a2e4 cos2(i) − 41160a2e4 cos4(i) + 980a2e4 cos(2ω) − 5120a′
2
e2 cos(2ω)

+ 72030a2e2 cos(2ω)2 − 72030a2e4 cos(2ω)2 + 7840a2 cos(2ω) cos2(i) − 5120a′
2
cos(2ω) cos2(i)

+ 62720a2e2 cos(2ω) cos2(i) − 109760a2e2 cos(2ω) cos4(i) + 23520a2e4 cos(2ω) cos2(i)

− 54880a2e4 cos(2ω) cos4(i) − 82320a2e2 cos(2ω)2 cos2(i) + 82320a2e4 cos(2ω)2 cos4(i)
]

(52)
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F3rd
42 = −

3eKn′
2

8192a′2 (1 − e2)(3/2)n

[
3600a2 cos2(i) − 82320a2 cos4(i) − 5120a′

2
cos2(i) + 420a2 cos(2ω)

+5120a′
2
cos(2ω) − 61740a2 cos(2ω)2 + 30150a2 − 1024a′

2
− 73215a2e2 + 43065a2e4 + 1024a′

2
e2

−14760a2e2 cos2(i) + 99960a2e2 cos4(i) + 16200a2e4 cos2(i) − 52920a2e4 cos4(i) − 1680a2e2 cos(2ω)

+1260a2e4 cos(2ω) − 5120a′
2
e2 cos(2ω) + 154350a2e2 cos(2ω)2 − 92610a2e4 cos(2ω)2

−57120a2 cos(2ω) cos2(i) + 94080a2 cos(2ω) cos4(i) + 5120a′
2
cos(2ω) cos2(i)

+70560a2 cos(2ω)2 cos2(i) − 13440a2e2 cos(2ω) cos2(i) + 47040a2e2 cos(2ω) cos4(i)

+30240a2e4 cos(2ω) cos2(i) − 70560a2e4 cos(2ω) cos4(i) − 35280a2e2 cos(2ω)2 cos2(i)

−141120a2e2 cos(2ω)2 cos4(i) + 105840a2e4 cos(2ω)2 cos4(i)
]

(53)

F3rd
43 =

15Kn′
2 cos(i)(cos2(i) − 1)

512a′2 sin(i)(1 − e2)1/2n

[
1176a2 cos2(i) + 84a2 cos(2ω) − 128a′

2
cos(2ω) − 432a2

+128a′
2
+ 171a2e2 + 135a2e4 + 1470a2e2 cos2(i) − 882a2e4 cos2(i) + 672a2e2 cos(2ω)

+252a2e4 cos(2ω) − 882a2e2 cos(2ω)2 − 2352a2e2 cos(2ω) cos2(i)

−1176a2e4 cos(2ω) cos2(i) + 1764a2e4 cos(2ω)2 cos2(i)
]

(54)

F3rd
44 =

3Kn′
2 sin(2ω)(5 cos2(i) + 5e2 − 5)

4(1 − e2)1/2n
−

9a2Kn′
2
(1 − e2)1/2

32768a′2 n
[2 sin(2ω)(2240 cos(2i) + 1680)

+2e2 sin(2ω)(2240 cos(2i) + 1680) − 4e2 sin(4ω)(11760 cos(2i) − 8820)
]

−
9a2Kn′

2 cos(i)
65536a′2 sin(i)(1 − e2)1/2n

[
2e4 sin(2ω)(2240 sin(2i) − 7840 sin(4i))

−4e4 sin(4ω)(11760 sin(2i) − 5880 sin(4i)) + 2e2 sin(2ω) [4480 sin(2i) − 15680 sin(4i)]
]

(55)

F3rd
51 =

1
16384aa′2 µ sin(i)(1 − e2)1/2n

[
5040a2µKn′

2
sin(2i)(e2 − 1) − 9216a′

2
µKn′

2
sin(2i)

+17640a2µKn′
2
sin(4i)(e2 − 1) − 13824a′

2
e2µKn′

2
sin(2i) + 25200a2e2µKn′

2
sin(2i)(e2 − 1)

+88200a2e2µKn′
2
sin(4i)(e2 − 1) + 9450a2e4µKn′

2
sin(2i)(e2 − 1)

+33075a2e4µKn′
2
sin(4i)(e2 − 1) + 35280a2e2µKn′

2
cos(2ω) sin(2i)(e2 − 1)

−123480a2e2µKn′
2
cos(2ω) sin(4i)(e2 − 1) + 17640a2e4µKn′

2
cos(2ω) sin(2i)(e2 − 1)

−61740a2e4µKn′
2
cos(2ω) sin(4i)(e2 − 1) − 92610a2e4µKn′

2
cos(4ω) sin(2i)(e2 − 1)

+46305a2e4µKn′
2
cos(4ω) sin(4i)(e2 − 1) + 46080a′

2
e2µKn′

2
cos(2ω) cos(i) sin(i)

]
(56)

F3rd
52 =

3eKn′
2 cos(i)(5 cos(2ω) − 3)

4(1 − e2)1/2n
−

3eKn′
2 cos(i)(3e2 − 5e2 cos(2ω) + 2)

8(1 − e2)(3/2)n

−
9a2Kn′

2
(1 − e2)1/2

65536a′2 sin(i)n
[
3200e(2 sin(2i) + 7 sin(4i)) + 4e3(1200 sin(2i) + 4200 sin(4i))

+2e cos(2ω)(4480 sin(2i) − 15680 sin(4i)) + 4e3 cos(2ω)(2240 sin(2i) − 7840 sin(4i))

−4e3 cos(4ω)(11760 sin(2i) − 5880 sin(4i))
]
+

9a2eKn′
2

65536a′2 sin(i)(1 − e2)1/2n
[640 sin(2i)

+2240 sin(4i) + e4(1200 sin(2i) + 4200 sin(4i)) + e2(3200 sin(2i) + 11200 sin(4i))

+e4 cos(2ω)(2240 sin(2i) − 7840 sin(4i)) − e4 cos(4ω)(11760 sin(2i) − 5880 sin(4i))

+e2 cos(2ω)(4480 sin(2i) − 15680 sin(4i))
]

(57)
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F3rd
53 =

3Kn′
2 sin(i)(3e2 − 5e2 cos(2ω) + 2)

8(1 − e2)1/2n
−

9a2Kn′
2
(1 − e2)1/2

65536a′2 sin(i)n
[1280 cos(2i) + 8960 cos(4i)

+e4(2400 cos(2i) + 16800 cos(4i)) + e2(6400 cos(2i) + 44800 cos(4i))

+e4 cos(2ω)(4480 cos(2i) − 31360 cos(4i)) − e4 cos(4ω)(23520 cos(2i) − 23520 cos(4i))

+e2 cos(2ω)(8960 cos(2i) − 62720 cos(4i))
]
+

9a2Kn′
2 cos(i)(1 − e2)1/2

(65536a′2 sin2(i)n)
[640 sin(2i)

+2240 sin(4i) + e4(1200 sin(2i) + 4200 sin(4i)) + e2(3200 sin(2i) + 11200 sin(4i))

+e4 cos(2ω)(2240 sin(2i) − 7840 sin(4i)) − e4 cos(4ω)(11760 sin(2i) − 5880 sin(4i))

+e2 cos(2ω)(4480 sin(2i) − 15680 sin(4i))
]

(58)

F3rd
54 =

9a2Kn′
2
(1 − e2)1/2

65536a′2 sin(i)n
[
2e4 sin(2ω)(2240 sin(2i) − 7840 sin(4i))

−4e4 sin(4ω)(11760 sin(2i) − 5880 sin(4i)) + 2e2 sin(2ω)(4480 sin(2i) − 15680 sin(4i))
]

−
15e2Kn′

2 sin(2ω) cos(i)
4(1 − e2)1/2n

(59)

F3rd
61 = −

3µKn′
2

16384a4a′2 n3

[
211680a2 sin4(i) − 265440a2 sin2(i) − 6144a′

2
sin2(i) − 41160a2 sin2(ω)

+68964a2 + 14336a′
2
+ 167685a2e2 + 25305a2e4 + 6144a′

2
e2 − 474600a2e2 sin2(i)

+441000a2e2 sin4(i) − 840a2e4 sin2(i) + 88200a2e4 sin4(i) + 6144a′
2
e2 sin2(i)

−41160a2e2 sin2(ω) − 123480a2e2 sin4(ω) + 82320a2e4 sin2(ω) − 123480a2e4 sin4(ω)

+47040a2 sin2(i) sin2(ω) − 15360a′
2
sin2(i) sin2(ω) − 799680a2e2 sin2(i) sin2(ω)

+987840a2e2 sin2(i) sin4(ω) − 940800a2e4 sin2(i) sin2(ω) + 987840a2e4 sin2(i) sin4(ω)

−15360a′
2
e2 sin2(i) sin2(ω)

]
(60)

F3rd
62 = −

3eKn′
2

4096a′2 n

[
63000a2 sin4(i) − 67800a2 sin2(i) + 2048a′

2
sin2(i) − 5880a2 sin2(ω)

−17640a2 sin4(ω) + 23955a2 + 2048a′
2
+ 7230a2e2 − 240a2e2 sin2(i) + 25200a2e2 sin4(i)

+23520a2e2 sin2(ω) − 35280a2e2 sin4(ω) − 114240a2 sin2(i) sin2(ω) + 141120a2 sin2(i) sin4(ω)

−5120a′
2
sin2(i) sin2(ω) − 268800a2e2 sin2(i) sin2(ω) + 282240a2e2 sin2(i) sin4(ω)

] (61)

F3rd
63 =

3Kn′
2

2048a′2 n

[
1080a2 sin(2i) + 3780a2 sin(4i) + 1792a′

2
sin(2i) + 2250a2e2 sin(2i)

+7875a2e2 sin(4i) + 450a2e4 sin(2i) + 1575a2e4 sin(4i) + 768a′
2
e2 sin(2i) + 840a2 cos(2ω) sin(2i)

−2560a′
2
cos(i) cos(ω)2 sin(i) + 3360a2e2 cos(2ω) sin(2i) − 4410a2e2 cos(4ω) sin(2i)

+840a2e4 cos(2ω) sin(2i) − 4410a2e4 cos(4ω) sin(2i) − 2560a′
2
e2 cos(i) cos(ω)2 sin(i)

] (62)

F3rd
64 =

9a2Kn′
2

8192a′2 n

[
2e4 sin(2ω)(1120 cos(2i) + 840) + 2e2 sin(2ω)(2240 cos(2i) + 1680)

−4e4 sin(4ω)(5880 cos(2i) − 4410)
]
+

Kn′
2 cos(ω) sin2(i) sin(ω)(15e2 + 15)

4n

−
9a2Kn′

2
(e2 − 1)

32768a′2 n

[
2 sin(2ω)(2240 cos(2i) + 1680) + 2e2 sin(2ω)(2240 cos(2i) + 1680)

−4e2 sin(4ω)(11760 cos(2i) − 8820)
]

(63)
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where K = m′/(m′ + m0), m′ is the mass of the third body, m0 is the mass of the central body, n′ is the mean orbital
motion of the third body and a′ is semi-major axis of the third body.

Although atmospheric drag is extensively studied, an exact or accurate model is yet to exist. One of the main reasons
is the fact that density is difficult to model mainly due to the effects of solar wind activity on the atmosphere. However,
analytical approximations of the effects of drag on orbital elements exist in literature based on the exponential model
for density. The first analytical model was formulated by Izsak[32] in 1960 where he separated the effects in terms
of periodic and secular variations. Xu, et al. [33] and Watson, et al. [34] also developed an analytical solution for
drag, while Danielson[35] developed a semi-analytic solution and Martinusi, et al.[36] developed a first order accurate
analytical solution. This paper focuses on the work of Blitzer [18] where he developed secular solutions for drag based
on the exponential atmospheric model. This work derives the drag Jacobian matrix as

FDrag(x) =



FDrag
11 FDrag

12 FDrag
13 0 0 0

FDrag
21 FDrag

22 FDrag
23 0 0 0

FDrag
31 FDrag

32 FDrag
33 FDrag

34 0 0
FDrag

41 FDrag
42 FDrag

43 FDrag
44 0 0

FDrag
51 FDrag

52 FDrag
53 FDrag

54 0 0
0 0 0 0 0 0


(64)

where

FDrag
11 = −

1
8Hm(e + 1)1/2

[
CD Aaρexp(−c)(Hn(e + 1)1/2 − 2aen(e + 1)1/2 − 8HωE cos(i)(1 − e)3/2

+4aeωE cos(i)(1 − e)3/2)(4B0 + 8B1e + 3B0e2 + 3B1e3 + 3B2e2 + B3e3)
] (65)

FDrag
12 =

1
Hm(e + 1)1/2

[
CD Aa3ρexp(−c)(n(e + 1)1/2 − 2ωE cos(i)(1 − e)3/2)×

(B0 + 2B1e + 0.75B0e2 + 0.75B1e3 + 0.75B2e2 + 0.25B3e3)
]

−
1

m(e + 1)1/2
[
CD Aa2ρexp(−c)(n(e + 1)1/2 − 2ωE cos(i)(1 − e)3/2)×

(2B1 + 1.5B0e + 1.5B2e + 2.5B1e2 + 0.75B3e2] − 1
m(e + 1)3/2

[
2CD Aa2ρωEexp(−c)×

cos(i)(1 − e)1/2(e + 2)(B0 + 2B1e + 0.75B0e2 + 0.75B1e3 + 0.75B2e2 + 0.25B3e3)
]

(66)

FDrag
13 = −

2CD Aa2ρωEexp(−c) sin(i)(1 − e)3/2

m(e + 1)1/2
[
(B0 + 2B1e + (3e2(B0 + B2))/4 + (e3(3B1 + B3))/4)

]
(67)

FDrag
21 =

CD Aρexp(−c)(Hn(e + 1)1/2 + 2aen(e + 1)1/2 + 4HωE cos(i)(1 − e)3/2 − 4aeωE cos(i)(1 − e)3/2)
32Hm(e + 1)1/2

×[(16B1 + 8B0e + 8B2e − 5B0e3 − 10B1e2 − 4B2e3 − 2B3e2 + B4e3)
] (68)

FDrag
22 =

CD Aaρexp(−c)(n(e + 1)1/2 − 2ωE cos(i)(1 − e)3/2)
m(e + 1)1/2

[1.25B1e − 0.5B2 − 0.5B0 + 0.25B3e

+
15
16

B0e2 + 0.75B2e2 −
3
16

3B4e2
]
+

CD Aa2ρexp(−c)(n(e + 1)1/2 − 2ωE cos(i)(1 − e)3/2)
Hm(e + 1)1/2

×

[
B1 + 0.5B0e + 0.5B2e −

3
16

B0e3 −
5
8

B1e2 − 0.25B2e3 − 0.125B3e2 +
1
16

B4e3
]

−
2CD AaρωEexp(−c) cos(i)(1 − e)1/2(e + 2)

m(e + 1)3/2

[
B1 + 0.5B0e + 0.5B2e −

5
16

B0e3 −
5
8

5B1e2

−0.25B2e3 − 0, 125B3e2 +
1
16

B4e3
]

(69)

11



FDrag
23 = −

2CD AaρωEexp(−c) sin(i)(1 − e)3/2

m(e + 1)1/2
[
B1 − 0.125e2(5B1 + B3)

−
1
16

e3(5B0 + 4B2 − B4) + 0.5e(B0 + B2)

] (70)

FDrag
31 =

CD AρωEexp(−c)
16Ha3mn3

[
1 − (2ωE cos(i)(1 − e)3/2)/(n(e + 1)1/2))1/2

]
(e + 1)1/2

×[
7HµωE sin(2i)(1 − e)3/2 − 4Ha3 sin(i)n3(e + 1)1/2 + 4a4e sin(i)n3(e + 1)1/2

−4aeµωE sin(2i)(1 − e)3/2
]
[B0 − 2B1e + B2 cos(2ω) − 2B1e cos(2ω)]

(71)

FDrag
32 =

CD AaρωEexp(−c) sin(i)
4m

[
1 − (2ωE cos(i)(1 − e)3/2)/(n(e + 1)1/2)1/2

]
×

[2B1 + 2B1 cos(2ω)] +
CD Aa2ρωEexp(−c) sin(i)

4Hm

[
1 − (2ωE cos(i)(1 − e)3/2)/(n(e + 1)1/2)1/2

]
× [B0 − 2B1e + cos(2ω)(B2 − 2B1e)] −

CD AaρωEexp(−c) sin(i)
8m

[
1 − (2ωE cos(i)(1 − e)3/2)/(n(e + 1)1/2)1/2

] ×[
(3ωE cos(i)(1 − e)1/2)/(n(e + 1)1/2) + (ωE cos(i)(1 − e)3/2)/(n(e + 1)3/2)

]
×

[B0 − 2B1e + cos(2ω)(B2 − 2B1e)]

(72)

FDrag
33 = −

CD AaρωEexp(−c)
4mnQ0.5(e + 1)1/2

[
cos(i)n(e + 1)1/2 − 2ωE cos2(i)(1 − e)3/2 + ωE sin2(i)(1 − e)3/2

]
× [B0 − 2B1e + B2 cos(2ω) − 2B1e cos(2ω)]

(73)

FDrag
34 =

[
CD AaρωE sin(2ω)exp(−c)sin(i)Q0.5(B2 − 2B1e)

]
/(2m) (74)

FDrag
41 =

CD AρωE sin(2ω)exp(−c) cos(i)(B2 − 2B1e)

8Ha3mn3
[
1 − (2ωE cos(i)(e + 1)3/2)/(n(e + 1)1/2)

]1/2
(e + 1)1/2

×(
2Ha3n3(e + 1)1/2 − 2a4en3(e + 1)1/2 − 7HµωE cos(i)(e + 1)3/2 + 4aeµωE cos(i)(e + 1)3/2

) (75)

FDrag
42 =

CD AaρωE sin(2ω)exp(−c) cos(i)(B2 − 2B1e)
8mQ0.5

(
(3ωE cos(i)(1 − e)1/2)/(n(e + 1)1/2)

+(ωE cos(i)(1 − e)3/2)/(n(e + 1)3/2)
)
−

[
B1CD AaρωE sin(2ω)exp(−c) cos(i)Q0.5] /(2m)

− CD Aa2ρωE sin(2ω)exp(−c)
[
cos(i)Q0.5(B2 − 2B1e)

]
/(4Hm)

(76)

FDrag
43 = −

CD AaρωE sin(2ω)exp(−c) sin(i)(B2 − 2B1e)
4mnQ0.5(e + 1)1/2

[
n(e + 1)1/2 − 3ωE cos(i)(1 − e)3/2

]
(77)

FDrag
44 = CD AaρωE cos(2ω)exp(−c) cos(i)Q0.5(B2 − 2B1e)/(2m) (78)

FDrag
51 = −

CD AρωE sin(2ω)exp(−c)(B2 − 2B1e)
8Ha3mn3Q0.5(e + 1)1/2

[
2Ha3n3(e + 1)1/2 − 2a4en3(e + 1)1/2

−7HµωE cos(i)(1 − e)3/2 + 4aeµωE cos(i)(1 − e)3/2
] (79)

FDrag
52 =

B1CD AaρωE sin(2ω)exp(−c)Q0.5

2m
+

CD Aa2ρωE sin(2ω)exp(−c)Q0.5(B2 − 2B1e)
4Hm

−
CD AaρωE sin(2ω)exp(−c)(B2 − 2B1e)

8mQ1/2

[
3ωE cos(i)(1 − e)1/2

n(e + 1)1/2
+
ωE cos(i)(1 − e)3/2

n(e + 1)3/2

] (80)

FDrag
53 = −

CD Aaρω2
E sin(2ω)exp(−c)[

4mnQ0.5(e + 1)1/2
] sin(i)(B2 − 2B1e)(1 − e)3/2 (81)

FDrag
54 = −CD AaρωE cos(2ω)exp(−c)Q1/2(B2 − 2B1e)/(2m) (82)

where n, e, a, and ω are the mean orbital motion, eccentricity, semi-major axis and argument of perigee of a spacecraft
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respectively and ωE is angular velocity of Earth. The density at the perigee ρ, modified Bessel function of the first kind
Bj with argument c and the constants c and Q are given by

ρ = ρ0 exp(−
hp − h0

H
) (83)

hp = a(1 − e) − RE (84)

Bj(c) = (
c
2
)
j
∞∑
k=0

( c2 )
2k

k!Γ( j + k + 1)
(85)

c =
ae
H

(86)

Q = 1 −
2ωE (1 − e)1.5

n
√

1 + e
cos(i) (87)

where ρ0 is the atmospheric density in kg/m3 and H is the scale height at a reference altitude h0, hp is altitude of perigee,
Q is the factor for rotation of Earth’s atmosphere (between 0.9-1.1), A is exposed area in m2 to the direction of fluid
flow and CD is the coefficient of drag ranging from 1.5 to 3.0 for most spacecraft and m is mass of the spacecraft in kg.
It should be noted when using these equations for drag, ρ must be multiplied by a factor of 1000 since the units for
distance and speed are in km and km/s for spacecraft applications.

IV. Back-propagation guidance law
This section presents the procedure, summarized in steps, of the back-propagation guidance law by using the

equations presented in the previous sections
1) A set of Keplerian osculating orbital elements are first initialized for the target: [at0, et0, it0, ωt0,Ωt0, θt0 ]

T . Then,
converting them to mean elements as described in Chihabi and Ulrich[37] such that the Jacobian matrices are
evaluated as:

F(x) = Fkep(x) + FJ (x) + F3rd(x) + FDrag(x) (88)

2) Select the desired LVLH coordinates, ie: ρ f and Ûρ f , and the desired time, ∆t, the chaser is to drift into the
desired coordinates.

3) The desired relative orbital elements, ∆x f can be found using Equations (3)-(16) and the following equation

∆x f =

[
A11 A12

A21 A22

]−1 [
ρ f

Ûρ f

]
(89)

4) Using Equation (23), the initial relative orbital elements are found as:

∆x0 = [I6×6 + F(x)∆t]−1
∆x f (90)

V. Numerical Simulations
This section presents a comparison of results obtained using the equations above against a numerical propagator that

integrates the exact nonlinear differential equations of motion in FI to verify the accuracy of the model. The numerical
propagator integrates the inertial two-body equation of motion to which the inertial perturbing accelerations due to
gravitational field by expanding the gravitational potential function up to degree and order 180, third body effects of the
sun, moon and solar system planets, ocean and solid Earth tidal effects, relativity, solar radiation pressure, and drag
were added then converted from FI to FL .

The STM, proposed in this paper, was applied to the future Proba-3 mission and a chaser spacecraft in formation
around Alouette-2 and was compared against the numerical propagator. Specifically, the results were compared with
the results if the previous method presented in Chihabi and Ulrich [37]. Additionally, the back-propagation method
presented in this paper was applied to Alouette-2 for rendezvous formation, for which a sensitivity analysis by varying the
drift time was performed. The osculating orbital elements for the Proba-3 target spacecraft are initialized as a = 36944
km, e = 0.811, i = 59.0◦, ω = 188◦, Ω = 84.0◦, and θ = 0◦ whereas for Alouette-2 they were initialized as a = 7947
km, e = 0.134, i = 79.8◦, ω = 151.9◦, Ω = 348.3◦, and θ = 0◦.
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Fig. 1 Proba-3: Previous Solution

Figure 1 to Figure 3 show the results for the Proba-3 case, where the initial relative orbital elements were initialized
as ∆x = [0, 0.0005, 0, 0, 0, 0]T . Figure 1 shows the results for Proba-3 using the previous method outlined by Chihabi
and Ulrich[37]. While Figure 2 and 3 show the results using the new STM formulation. Specifically, the former shows
the results when incorporating secular variations of the target’s orbital elements due to the gravitational field up to the
fifth harmonic, third body perturbations due to the sun and moon, and drag into the A matrices that map the relative
orbital elements to Cartesian coordinates while the latter assumes the matrices to be Keplerian. Using the STM with the
target’s varying orbital elements, the errors slightly increased by approximately 200 meters after 10 orbital periods for a
separation distance of approximately 400 km in the along-track direction, excluding the effects of perturbations in the A
matrices computations yield an increase in maximum error by approximately 7000 meters.

Figure 4 to Figure 6 show the results for the Alouette-2 case initialized with the same relative orbital elements as the
Proba-3 case. When comparing Figures 4 and 5, the maximum error increased from near 5 meters to near 80 meters for
a maximum separation distance of 7500 meters in the along-track direction while Figure 6 showed an increase to near
300 meters. While assuming the A matrices to be Keplerian yielded a significant increase in error when compared to
the previous solution for the Proba-3 case, it is relatively insignificant when taking into the separation distance involved.

The proposed back propagation guidance law was validated against the same numerical simulator where the
sensitivity to time was analyzed by varying the total time from t f = 2T to t f = 15T and plotted as shown in Figure 7 to
Figure 12. In all cases, Alouette-2 was used as the target spacecraft and final desired cartesian coordinates were selected
as 2 km in the along-track and radial directions, and 0 km in the in-track direction. In all cases the chaser drifted into
the dired position with minimal error when compared to the numerical simulator. However, the main discrepancies were
found with the desired time, where the desired along track position error increased as the desired time increased. For
example, Figure 12 shows a desired time of 15 orbital periods having desired position errors were about 400 meters in
the along-track direction and nearly meters 0 in the radial and in-track directions. On the other hand, Figure 10 shows a
desired time of 8 orbital periods having desired position errors were less than 100 meters in the along-track direction
and nearly 0 meters in the radial and in-track directions.

VI. Conclusion
Overall, this paper presented a simple, yet effective, method for both forward and back propagation guidance laws.

Specifically, this paper integrates previously published results such that a new analytical solution that accurately predicts
spacecraft relative motion was developed. When the analytical solution was compared to the numerical simulator,
the relative motion yielded relatively small errors. The use of the STM allows for the guidance system to propagate
relative motion as a LTI system, since the Jacobian matrices need only be calculated once. In other words, the new
solution allows to propagate the relative orbital elements by the multiplication of constant matrices with time and initial
relative orbital elements. Whereas the previous solution, presented in Chihabi and Ulrich [37], involved calculating
new orbital elements at every time-step for both the target and the chaser spacecraft which are then used in Gurfil
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Fig. 2 Proba-3: STM, Varying Target Orbital Elements

Fig. 3 Proba-3: STM, Invariant Target Orbital Elements

Fig. 4 Alouette-2: Previous Solution
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Fig. 5 Alouette-2: STM, Varying Target Orbital Elements

Fig. 6 Alouette-2: STM, Invariant Target Orbital Elements

Fig. 7 Alouette-2: ∆t = 2T
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Fig. 8 Alouette-2: ∆t = 4T

Fig. 9 Alouette-2: ∆t = 6T

Fig. 10 Alouette-2: ∆t = 8T
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Fig. 11 Alouette-2: ∆t = 10T

Fig. 12 Alouette-2: ∆t = 15T
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and Kholshevnikov’s non-linear equations of motion to calculate relative motion. Additionally, the previous method
employed the conversion of mean to osculating elements at every time-step whereas the new solution does not. The
application of the STM in the back-propagation guidance law allows for the computation of initial relative orbital
elements such that the chaser spacecraft passively drifts into the desired position with a single step. While the solution
maintains an accurate tracking performance for the back-propagation guidance law, the main discrepancies lie within the
desired time for which the cause is not yet known. Future work will be to include the effects of short and long periodic
variations within the state-transition matrix formulation.
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